
ar
X

iv
:1

90
8.

09
65

8v
1

 [
cs

.M
A

]
 2

6
A

ug
 2

01
9

Dynamic Term-Modal Logic for Epistemic Social

Network Dynamics (Extended Version)

Andrés Occhipinti Liberman1 and Rasmus K. Rendsvig2

1 DTU Compute
aocc@dtu.dk

2 Center for Information and Bubble Studies, University of Copenhagen
rasmus@hum.ku.dk

Abstract. Logics for social networks have been studied in recent liter-
ature. This paper presents a framework based on dynamic term-modal
logic (DTML), a quantified variant of dynamic epistemic logic (DEL). In
contrast with DEL where it is commonly known to whom agent names
refer, DTML can represent dynamics with uncertainty about agent iden-
tity. We exemplify dynamics where such uncertainty and de re/de dicto
distinctions are key to social network epistemics. Technically, we show
that DTML semantics can represent a popular class of hybrid logic epis-
temic social network models. We also show that DTML can encode pre-
viously discussed dynamics for which finding a complete logic was left
open. As complete reduction axioms systems exist for DTML, this yields
a complete system for the dynamics in question.

Keywords: social networks, term-modal logic, dynamic epistemic logic

1 Introduction

Over recent years, several papers have been dedicated to logical studies of social
networks, their epistemics and dynamics [2,10–14,18–22,24,25]. The purpose of
this literature typically is to define and investigate some social dynamics with
respect to e.g. long-term stabilization or other properties, or to introduce formal
logics that capture some social dynamics, or both.

This paper illustrates how dynamic term-modal logic (DTML, [1]) may be
used for the second purpose. In general, term-modal logics are first-order modal
logics where the index of modal operators are first-order terms. I.e., the operators
double as predicates to the effect that e.g. ∃xKxN(x, a) is a formula—read, in
this paper, as “there there exists an agent that knows of itself that it is a social
network neighbor of a”. The dynamic term-modal logic of [1] extends term-
modal logic with suitably generalized action models that can effectuate both
factual changes (e.g. to the network structure) as well as epistemic changes. For
all the DTML action model encodable dynamics, [1] presents a general sound
and complete reduction axiom-based logic in the style of dynamic epistemic
logic (DEL, [3, 4]). Hence, whenever an epistemic social network dynamics is
encodable using DTML, completeness follows. With this in mind, the main goal

http://arxiv.org/abs/1908.09658v1

of this paper is to introduce and illustrate DTML as a formalism for representing
epistemic social network dynamics, and to show how it may be used to obtain
completeness results.

To this end, the paper progresses as follows. Sec. 2 sketches some common
themes in the logical literature on social networks before introducing DTML and
its application to epistemic social networks. Sec. 2 contains the bulk of the paper,
with numerous examples of both static DTML models and action models. The
examples are both meant to showcase the scope of DTML and to explain the more
non-standard technical details involved in calculating updated models. In Sec. 3,
we turn to technical results, where it is shown that DTML may encode popular
static hybrid logical models of epistemic networks, as well as the dynamics of [12],
for which finding a complete logic was left open. Sec. 4 contains final remarks.

2 Models and Languages for Epistemic Social Networks

To situate DTML in the logical literature on social networks, we cannot but
describe the literature in broad terms. We omit both focus, formal details and
main results of the individual contributions in favor of a broad perspective. That
said, then all relevant literature in one way or other concern social networks. In
general, a social network is a graph (A,N) where A is a set of agents and
N ⊆ A × A is represents a social relation, e.g., being friends on some social
media platform. Depending on interpretation, N may be assumed irreflexive
and symmetric. Social networks may be augmented with assignments of atomic
properties to agents, representing e.g. behaviors, opinions or beliefs. One set of
papers investigates such models and their dynamics using fully propositional
static languages [13, 20, 24, 25].

A second set of papers combines social networks with a semantically repre-
sented epistemic dimension in the style of epistemic logic. In these works, the
fundamental structure of interest is (akin to) a tuple

(A,W, {Nw}w∈W ,∼)

with agents A and worldsW , with each world w associated with a network Nw ⊆
A×A, and ∼: A→ P(W×W) associating each agent with an indistinguishability
(equivalence) relation ∼a. Call such a tuple an epistemic network structure.

The existing work on epistemic network structures may be organized in terms
of the static languages they work with: propositional modal logic [2,14] or hybrid
logic [9–12, 18, 19, 21, 22]. In the former, the social network is described using
designated atomic propositions (e.g., Nab for ‘b is a neighbor of a’). To produce
a model, an epistemic network structure is augmented with a propositional val-
uation V : P → P(W). Semantically, Nab is then true at w iff (a, b) ∈ Nw.
Knowledge is expressed using operators {Ka}a∈A as in standard epistemic logic
with Ka the Kripke modality for ∼a.

In the hybrid case, the network is instead described using modal operators.
The hybrid languages typically include a set of agent nominals Nom (agent
names), atoms P and indexical modal operators K and N , read “I know that”

and “all my neighbors”. Some papers additionally include state nominals, hy-
brid operators (@x, ↓x) and/or universal modalities U (“for all agents”). A hy-

brid network model is an epistemic network structures extended with two
assignments: a nominal assignment g : Nom → A that names agents, and a
two-dimensional hybrid valuation V : P → P(W × A), where (w, a) ∈ V (p)
represents that the indexical proposition p holds of agent a at w. The satis-
faction relation is relative to both an epistemic alternative w and an agent a,
where the noteworthy clause are: M,w, a |= p iff (w, a) ∈ V (p); M,w, a |= Kϕ

iff M, v, a |= ϕ for every v ∼a w; and M,w, a |= Nϕ iff M,w, b |= ϕ for every
b such that Nw(a, b). With these semantics, formulas are read indexically. E.g.
KNp reads as “I know that all my neighbors are p”.

In relation to these two language types, the term-modal approach of this pa-
per lies closer to the former: By including a binary ‘neighbor of’ relation symbol
N in the signature of a term-modal language, the social network component of
models is described non-modally. This straightforwardly allows expressing e.g.
that that all agents know all their neighbors (∀x∀y(N(x, y) → Kx(N(x, y))) or
that an agent has de re vs. de dicto knowledge of someone being a neighbor
(∃xKaN(a, x) vs. Ka∃xN(a, x)). Moreover, hybrid languages can be translated
into DTML, in such a way that hybrid formulas such as @ap (“agent a has prop-
erty p”) become equivalent to P (a), if a is the name of a.

2.1 Term-Modal Logic and Epistemic Network Structures

In general, term-modal languages may be based on any first-order signature, by
for the purposes of representing social networks and factual properties of agents,
we limit attention to the following:3

Definition 1. A signature is a tuple Σ = (V, C, P, N,
.
=) with V a countably

infinite set of variables, C and P countable sets of constants and unary predicates,
N a binary relation symbol and

.
= for identity. The terms of Σ are T := V ∪ C.

With t1, t2 ∈ T, x ∈ V and P ∈ P, the language L(Σ) is given by

ϕ := P (t1) | N(t1, t2) | (t1
.
= t2) | ¬ϕ | ϕ ∧ ϕ | Ktϕ | ∀xϕ

Standard Boolean connectives, ⊤, ∃ and K̂t are defined per usual. With ϕ ∈
L, t ∈ T, x ∈ V, the result of replacing all occurrences of x in ϕ with t is denoted
ϕ(x 7→ t). Formulas from the first three clauses are called atoms; if an atom
contains no variables, it is ground.

Throughout, a, b, etc. are used for constants and the relation symbol N de-
notes a social network. The reading of N(t1, t2) depends on application. Ktϕ is
a term-indexed epistemic operator which read as “agent t knows that ϕ”. L(Σ)
neither enforces nor requires a fixed-size agent set A, in contrast with standard
epistemic languages, where the set of operators is given by reference to A. Hence
the same language may be used to describe networks of varying size.

3 The defined are special cases of the setting in [1], which allows general signatures
and non-agent terms. [1] also reviews the term-modal literature.

To interpret L(Σ), we use constant-domain models (the same number of
agents in each world) with non-rigid constants (names, like predicates and re-
lations, may change extension between worlds; this allows for uncertainty about
agent identity). See Figs. 1 and 2 for examples of such models.

a

b

c

w :

a

b

c

v :

a

b

c

u :

a, b, c a, b, c

Fig. 1. Example 1, pt. 1 (Server Error). Three agents a,b and c work in a company
with a hierarchical command structure, −→: a is the direct boss of b, who is the direct
boss of c. The server has thrown an error after both b and c tampered with it. Either w)
the server failed spontaneously, v) b made a mistake (marked by gray) or u) c made a
mistake. Lines represent indistinguishability with reflexive and transitive links omitted.
There is no uncertainty about the hierarchy, but nobody knows why the server failed.
In fact, c made a mistake: the actual world has a thick outline.

Definition 2. An L(Σ)-model is a tuple M = (A,W,∼, I) where A is a non-
empty domain of agents, W is a non-empty set of worlds, ∼ : A→ P(W×W)
assigns to each agent a ∈ A an equivalence relation on W denoted ∼a, and I
is an interpretation satisfying, for all w ∈ W , 1. for c ∈ C, I(c, w) ∈ A; 2. for
P ∈ P, I(P,w) ⊆ A; 3. I(N,w) ⊆ A × A. A pointed model is a pair (M,w)
with w ∈W called the actual world.
A variable valuation of Σ over M is a map g : V → A. The valuation identical
to g except mapping x to a is denoted g[x 7→ a]. The extension of the term

t ∈ T at w in M under g is JtK
I,g
w = g(t) for t ∈ V and JtK

I,g
w = I(t, w) for t ∈ C.

Given the inclusion of N in the signature Σ, each L(Σ)-model embeds an epis-
temic network structure (A,W, (∼a)a∈A, (I(N,w))w∈W).

Formulas are evaluated over pointed models using a direct combination of
first-order and modal semantics:

Definition 3. Let Σ, M and g be given. The satisfaction of formulas of L(Σ)
is given recursively by

M,w �g P (t1) iff Jt1K
I,g
w ∈ I(P,w), for P ∈ P.

M,w �g N(t1, t2) iff (Jt1K
I,g
w , Jt2K

I,g
w) ∈ I(N,w).

M,w �g (t1
.
= t2) iff Jt1K

I,g
w = Jt2K

I,g
w .

M,w �g ¬ϕ iff not M,w �g ϕ.

M,w �g ϕ ∧ ψ iff M,w �g ϕ and M,w �g ψ.

M,w |=g ∀xϕ iff M,w |=g[x 7→a] ϕ for all a ∈ A.

M,w �g Ktϕ iff M,w′ �g ϕ for all w′ such that w ∼JtKI,g
w

w′.

2.2 Knowing Who and Knowledge De Dicto and De Re

First-order modal languages can represent propositional attitudes de dicto (about
the statement) and de re (about the thing) in principled manners. For example,
Ka∃xP (x) is a de dicto statement: knowledge is expressed about the proposi-
tion that a P -thing exists. In contrast, ∃xKaP (x) is a de re statement: it is
expressed that of some thing x, that x is known to be a P -thing. In general, de
re statements are stronger than de dicto statements. The difference has been ap-
preciated in epistemic logic since Hintikka’s seminal [16], where he argues that
∃xKa(x

.
= b) expresses that a knows who b is (see Fig. 2). Semantically, the

formula ensures that the constant b refers to the same individual in all a’s epis-
temic alternatives (i.e., b is locally rigid). Both de dicto and de re statements
may partially be expressed in propositional languages (e.g. de dicto Ka(pb ∨ pc)
vs. de re Kapb ∨Kapc; see [2] for such a usage), but not in a principled manner:
the required formulas will depend on the specific circumstances.

t b

h i c

w1 : t 7→ t, b 7→ b, a 7→ h

t b

h i c

w2 : t 7→ b, b 7→ t, a 7→ h

t b

h i c

w3 : t 7→ t, b 7→ b, a 7→ i

t b

h i c

w4 : t 7→ b, b 7→ t, a 7→ i

c

cc

c

Fig. 2. Example 2, pt.1 (Knowing Who). Two thieves, t and b, hide in a building
with hostages h and i. Outside, a cop, c, waits. To communicate safely, the thieves
use code names ‘Tokyo’ and ‘Berlin’ for each other and ‘The Asset’ for the specially
valuable hostage h. Agents t, b, h and i all know whom the code names denote (the
names are rigid for them), but the cop does not. The code names are t for t, b for b

and a for h. Known by all, h and i are in fact called h and i. The thief network (—) is
assumed symmetric and transitive. The case is modeled using four worlds, identical up
to code name denotation, (shown by 7→). E.g., in the actual world is w1, t names t, but
in w4, it names b. Hence the cop does not know who Tokyo is: M,w1 �g ¬∃xKc(x

.
= t).

2.3 Dynamics: Action Models and Product Update

To code operations on static models, we use a a variant of DEL-style action
models, adapted to term-modal logic (see Fig. 3). They include (adapted versions
of) preconditions specifying when an event is executable ([3, 4]), postconditions
describing the factual effects of events ([5, 7, 15]) as well as edge-conditions
representing how an agent’s observation of an action depends on the agent’s
circumstances ([6])—for example their position in a network, cf. Fig. 3. Edge-
conditions are non-standard and deserve a remark. With E the set of events,
edge-conditions are assigned by a map Q. For each edge (e, e′) ∈ E×E, Q(e, e′)
is a formula with a single free variable x⋆. Given a model M , an agent i cannot

distinguish e from e′ iff the edge-condition Q(e, e′) is true in M when the free
variable x⋆ is mapped to i. Intuitively, if the situation described by the edge-
condition is true for i, the way in which i is observing the action does not allow
her to tell whether e or e′ is taking place. See Figure 4 for an example. See [1] for
a comparison of this approach to that of [6] and the term-modal action models
of [17].

¬∃xM(x)

⊤

1 :
M(b)

⊤

2 :
M(c)

⊤

3 :
∃xM(x)

⊤

4 :ϕ ϕ ϕ

ϕ := ∃xN(x, x⋆)

Fig. 3. Example 1, pt. 2 (Edge-Conditions: Announcement to Subgroup). To
learn what happened to the server, the top boss a requests its log file. The log holds
one of four pieces of information: 1) Nobody made a mistake, 2) b made a mistake (M),
3) c made a mistake or 4) somebody made a mistake. Each box represents one of these
events: top lines are preconditions, bottom lines postconditions (⊤ means no factual
change). In fact, the log rats on c. N denotes the hierarchy. The log is send only to the
top boss: the others cannot see its content. This is represented by the edge-condition
ϕ: If you, x⋆, have a boss, then you cannot tell 1) from 2) nor 2) from 3) etc. For
unillustrated edges, Q(e, e) = (x⋆ .

= x⋆) and Q(e, e′) = ϕ when e 6= e′.

For simplicity, we here only define action models that take pre-, post, and
edge-conditions in the static language L(Σ). However, dynamic conditions are
needed for completeness; we refer to [1] for details.

Definition 4. An action model for L(Σ) is a tuple ∆ = (E,Q, pre, post) where

✄ E is a non-empty, finite set of events.

✄ Q : (E × E) → L(Σ) where each edge-condition Q(e, e′) has exactly one
free variable x⋆.

✄ pre : E → L(Σ) where each precondition pre(e) has no free variables.

✄ post : E → (GroundAtoms(L(Σ)) → L(Σ)) assigns to each e ∈ E a post-

condition for each ground atom.
To preserve the meaning of equality, let post(e)(t

.
= t) = ⊤ for all e ∈ E.

With no general restrictions on Q, to ensure that all agents’ indistinguishability
relations continue to be equivalence relations after updating, Q must be cho-
sen with care. Throughout, we assume Q(e, e) = (x⋆

.
= x⋆) for all e ∈ E. To

update, product update may be altered to fit the edge-condition term-modal set-
ting as below. Fig. 4 illustrates the product update of Figs. 1 with 3. The use of
postconditions is illustrated in Figs. 7 and 8.

Definition 5. Let M = (A,W,∼, I) and ∆ = (E,Q, pre, post) be given. The
product update of M and ∆ is the model M ⊗∆ = (A′,W ′,∼′, I ′) where

1. A′ = A

2. W ′ = {(w, e) ∈ W × E : (M,w) �g pre(e)} for any g,

3. (w, e) ∼′
i (w

′, e′) iff w ∼i w
′ and M,w �g[x⋆ 7→i] Q(e, e′),

4. I ′(c, (w, e)) = I(c, w) for all c ∈ C, and
I ′(X, (w, e)) = (I(X,w) ∪X+(w)) \X−(w), for X = {P,N}, P ∈ P, where:

P+(w) :={JtKI,vw : (M,w) �g post(e)(P (t))};

P−(w) :={JtKI,vw : (M,w) 6�g post(e)(P (t))};

N+(w) :={(Jt1K
I,v
w , Jt2K

I,v
w) : (M,w) �g post(e)(N(t1, t2))};

N−(w) :={(Jt1K
I,v
w , Jt2K

I,v
w) : (M,w) 6�g post(e)(N(t1, t2))}

If (M,w) |= pre(e), then (A, e) is applicable to (M,w), and the product update
of the two is the pointed model (M ⊗∆, (w, e)). Else it is undefined.

a

b

c

w1 :
a

b

c

v2 :

a

b

c

u3 :

a

b

c

v4 :

a

b

c

u4 :

b, c

b, c

b, c

a, b, c

b, c b, c

Fig. 4. Example 1, pt. 3 (Product Update: Edge-Conditions). The product
update of Fig. 1 and Fig. 3. After checking the logs, the boss has learned that c made
a mistake, while both b and c are now both uncertain about this, as well as about the
boss’ information. Worlds are named using by the world-event pair they represent: w1 is
the child of w and 1, etc. The pair w2 is not a world: w did not satisfy the precondition
of 1. We have w1 ∼′

b v2 as w ∼b v and M,w �g[x⋆ 7→a] Q(1, 2)—as M,w �g ∃xN(x, b).
Likewise, v2 ∼′

b w1 as v ∼b w and M,v �g ∃xN(x, b). That w1 6∼′

a v2 follows as
M,w �g ¬∃xN(x, b), but v4 ∼′

a u4 as M,v �g (a
.
= a). The same reason, reflexive

loops are preserved. The boss now knows that c made a mistake: KaM(c).

2.4 Announcements De Dicto and De Re

With de dicto and de re statements expressible in DTML, they may be used
to define principled announcements, as exemplified in Fig. 5 and 6. The action
models are applicable to any DTML model for a signature that includes the
constant a and the predicate M , irrespective of the size of the set of agents. This
level of general applicability is not mirrored in standard DEL action models.

Ka∃xM(x)

⊤

e :
a

b

c

v2e :

a

b

c

u3e :

a

b

c

v4e :

a

b

c

u4e :

b, c

a, b, c

b, c b, c

Fig. 5. Example 1, pt. 3 (De Dicto Announcement). The boss breaks the news
from the log to b and c piecemeal. Left: First, a makes a de dicto announcement: a
knows that somebody made a mistake. Right: The effect on Fig. 4. Only w1 does not
survive. In u3e, everybody knows de dicto that somebody messed up: ∀xKx∃yM(y).
The boss also knows de re, i.e., knows who: u3e �g ∃xKaM(x), as u3e �g[x 7→c]

KaM(x). The employees do not know that a knows de re: u3e �g ∀x(∃yN(y,x) →
K̂x¬∃zKaM(z))—since v4e �g M(x) iff g(x) = b, but then u4e 6�g M(x). I.e., there is
no one object to serve as valuation for x such that v4e and u4e satisfy M(x) simulta-
neously). The employees are held in suspense!

∃xKaM(x)

⊤

σ :

a

b

c

v2eσ :

a

b

c

u3eσ :

b, c

Fig. 6. Example 1, pt. 4 (De Re Announcement). Following a dramatic pause,
the boss reveals a stronger piece of information: the boss knows who messed up. This
de re announcement is on the left, with Q(e, e) = (x⋆ = x⋆); its result on Fig. 5 (Right)
on the right. In u3eσ, everybody knows that a has de re knowledge: ∀xKx∃yKaM(y),
but b and c still only have de dicto knowledge: ∀x((x = b ∨ x = c) → Kx∃yM(y) ∧
¬∃zKxM(z)).

2.5 Postconditions and Network Change

Action models with postconditions allows DTML to represent changes to the
social network. Such changes may be combined with the general functionality
of action models such that some agents may know what changes occur while
others remain in the dark. Fig. 7 provides a simple example, including the details
calculating the updated network. Fig. 8 presents an example of how de re/de
dicto knowledge affects what is learned by a publicly observed network change.

⊤

N(a, b),N(b, c) 7→ ⊥, N(a, c) 7→ ⊤

† :

a

b

c

v2eσ† :

a

b

c

u3eσ† :

b, c

Fig. 7. Example 1, pt. 5 (Getting Fired). The employees are dying to know who
messed up the server. But the boss just proclaims: ‘b, you are fired! c, you are pro-
moted!’ Left: Action with three instructions for factual change: post(†)(N(a, b)) = ⊥,
post(†)(N(b, c)) = ⊥ and post(†)(N(a, c)) = ⊤ (illustrated by 7→). Else post = id. As
u3eσ 6� ⊥, the first two instructions entail that (a, b), (b, c) ∈ N−(u3eσ), while the lat-
ter implies that (a, c) ∈ N+(u3eσ). Right: The network is updated to I ′(N,u3eσ†) =
(I(N,u3eσ) ∪ N+(u3eσ))\N−(u3eσ) = ({(a, b), (b, c)} ∪ {(a, c)})\{(a, b), (b, c)} =
{(a, b)}. In u3eσ†, neither b nor c know who made the mistake. Unrepresented, a

thinks that only bad superiors let their employees make mistakes.

⊤

N(·, a), N(a, ·) 7→ ∃xN(·, x)

e :

t b

h i c

w1e : t 7→ t, b 7→ b, a 7→ h

t b

h i c

w2e : t 7→ b, b 7→ t, a 7→ h

t b

h i c

w3e : t 7→ t, b 7→ b, a 7→ i

t b

h i c

w4e : t 7→ b, b 7→ t, a 7→ i

c

cc

c

Fig. 8. Example 2, pt.2 (Becoming Criminal) Left: The thieves convince The
Asset to cooperate with them, in exchange for stolen goods. For simplicity, assume that
the action of a joining the thief network is noticed by everyone. We model this with
the action model, with post(e)(N(·, a)) = ∃xN(·, x) and post(e)(N(a, ·)) = ∃xN(x, ·)
for · ∈ {t, b, a, h, i, c}. Informally, these say: “If you are a member of the network, then
a becomes your neighbor”. Right: The effect of event e on Fig. 2: The network has
changed in all worlds, but differently. E.g., in w1, we had ¬N(b, a); in (w1, e), we have
N(b, a) as (b, h) ∈ N+((w1, e)) since w1 �g post(e)(N(b, a))—i.e., ∃xN(b, x). Now all
thieves and hostages know the new network, as they know whom a refers to. E.g.: Tokyo
knows all her neighbors, (w1, e) �g ∀x(N(t, x) → KtN(t, x)). The cop only learns that
some hostage has joined the network, but can’t tell whom: (w1, e) �g Kc∃x(x 6

.
= t∧x 6

.
=

b ∧N(t, x)) but (w1, e) 6�g ∃xKc(x 6
.
= t ∧ x 6

.
= b ∧N(t, x)).

2.6 Learning Who

Allowing for the possibility of non-rigid names has the consequence that pub-
lic announcements of atomic propositions may differ in informational content
depending on the epistemic state of the listener. This can be exploited by the
thieves of Example 2 to enforce a form of privacy—as code names should. The
notion of privacy involved is orthogonal to the notion of privacy modeled in DEL
using private announcements. Though the message is public in the standard sense
of everyone being aware of it and its content, as it involves non-rigid names, its
epistemic effects are not the same for all agents. This is in contrast with standard
public announcements, which yield the same information to everyone.

a
.
= h

⊤

σ :

t b

h i c

w1eσ : t 7→ t, b 7→ b, a 7→ h

t b

h i c

w2eσ : t 7→ b, b 7→ t, a 7→ h

c

Fig. 9. Example 2, pt.4 (Revealing the Asset) In the model in Fig. 8 (Right),
even a public announcement of N(t, a) would not inform the cop about who joined the
network. To know who joined the network, the cop must learn who The Asset is. As
the cop knows who h is, learning that h is The Asset suffices. Left: The event model
σ for the public announcement that a

.
= h, revealing the identity of The Asset. Right:

The product update of Fig. 8 (Right) and event σ. The cop now knows the structure
of the network, as a result of the removal of w3e and w4e.

3 Embedding Dynamic Social Network Logics in DTML

This section examines relations between the hybrid network models and their
languages to DTML. As hybrid languages corresponds to fragments of first-order
logic with equality (FOL=), which term-modal logic extends, it stands to reason
that the hybrid languages and models mentioned in Sec. 2 may be embedded in
term-modal logic. A precise statement and a proof sketch follows below. Turning
to dynamics, things are more complicated. [22] presents a very flexible hybrid
framework expressing network dynamics using General Dynamic Dynamic Logic
(GDDL, [23]). We leave general characterizations of equi-expressive fragments of
GDDL and DTML as open question, but remark that all GDDL action-examples
of [22] may be emulated using DTML action models, and in many cases via fairly
simple ones. More thoroughly, we show that the logic of Knowledge, Diffusion
and Learning (KDL, [12]) has a complete and decidable system, a question left
open in [12]. This is shown by encoding KDL in DTML.

3.1 Embedding Static Languages and Models

The static hybrid languages of [9–12,19,21,22] are all sub-languages of L(P,Nom),
defined and translated into DTML below. [18] also includes state nominals, which
our results do not cover. L(P,Nom) is read indexically, as described in Sec. 2.

Definition 6. With p ∈ P and x ∈ Nom, the language L(P,Nom) is given by

ϕ := p | ¬ϕ | ϕ ∧ ϕ | @xϕ | Kϕ | Nϕ | Uϕ

Denote the fragments without U and @x by L−U (P,Nom) and L−@(P,Nom).

Hybrid logics may be translated into FOL=; our translation resembles that
of [8]. We identify agent nominals with first-order variables, translate the modal
operator N to the relation symbol N(·, ·), and relativize the interpretation of
the indexical K to the nominal/variable x by using the term-indexed operator
Kx. Formally, the translation is defined as follows.

Definition 7. Let Σn(P,Nom) = (V, C, P, N, =̇) be the signature with V = Nom,
C = {a1, . . . , an} and P = P . Translations Tx, Ty both mapping L(P,Nom) to
L(Σn(P,Nom)) are defined by mutual recursion. It is assumed that two nominals
x and y are given which do not occur in the formulas to be translated. For p ∈ P

and i ∈ Nom, define Tx by:

Tx(p) = p(x) Tx(@iϕ) = Tx(ϕ)(x 7→ i)

Tx(i) = x=̇i Tx(Nϕ) = ∀y(N(x, y) → Ty(ϕ))

Tx(ϕ ∧ ψ) = Tx(ϕ) ∧ Tx(ψ) Tx(Kϕ) = KxTx(ϕ)

Tx(¬ϕ) = ¬Tx(ϕ) Tx(Uϕ) = ∀xTx(ϕ)

The translation Ty is obtained by exchanging x and y in Tx.

To show the translation truth-preserving, we embed the class of hybrid net-
work models into a class of term-modal models:

Definition 8. Let M = (A,W, (Nw)w∈W ,∼, g, V) be a hybrid network model
for L(P,Nom). Then the TML image of M is the L(Σn(P,Nom)) TML model
T(M) = (A,W,∼, I) sharing A,W and ∼ with M and with I given by

1. ∀c ∈ C, ∀w, v ∈ W, ∀a, b ∈ A, (I(c, w) = a and w ∼b v ⇒ I(c, v) = a)

2. I(p, w) = {a : (w, a) ∈ V (p)}

3. I(N,w) = {(a, b) ∈ A×A : (a, b) ∈ Nw}

The model T(M) has the same agents, worlds and epistemic relations as M .
The interpretation 1. encodes weak rigidity : if (w, v) ∈

⋃

a∈A ∼a, then any
constant denotes the same in w and v, emulating the rigid names of hybrid
network models; 2. ensures predicates are true of the same agents at the same
worlds, and 3. ensures the same agents are networked in the same worlds.

With the translations Tx, Ty and the embedding T, it may be shown that
DTML can fully code the static semantics of L(P,Nom) hybrid network logics:

Proposition 1. Let M = (A,W, (Nw)w∈W ,∼, g, V) be a hybrid network model.
Then for all ϕ ∈ L(P,Nom), M,w, g(•) |= ϕ iff T(M), w |=g T•(ϕ), • = x, y.

3.2 KDL Dynamic Transformations and Learning Updates in DTML

We show that KDL [12] dynamics may be embedded in DTML, for finite agent sets
(as assumed in [12]). Given Prop. 1, we argue that each KDL model transformer
is representable by a DTML action model and that the dynamic KDL language is
truth-preservingly translatable into a DTML sublanguage. The logic of the class
of KDL models is, up to language translations, the logic of its corresponding
class of DTML models. We show that the logic of this class of DTML models
can be completely axiomatized, and the resulting system is decidable. Thus, by
embedding KDL in DTML, we find a complete system for the former.

In KDL4, agents are described by feature propositions reading “for feature f,
I have value z”. With F a countable set of features and Zf a finite set of possible
values of f ∈ F, the set of feature propositions is FP = {(f + z) : f ∈ F, z ∈ Zf}.
The static language of [12] is then L−U (FP, Nom). The dynamic language LKDL

extends L−U (FP, Nom) with dynamic modalities [d] and [ℓ] for dynamic trans-
formations d and learning updates ℓ:

ϕ ::= (f + z) | i | ¬ϕ | ϕ ∧ ϕ | @iϕ | Nϕ | Kϕ | [d]ϕ | [ℓ]ϕ

A dynamic transformation d changes feature values of agents: each is a pair
d = (Φ, post) where Φ ⊆ LKDL is a non-empty finite set of pairwise inconsistent
formulas and post : Φ × F → (Zn ∪ {⋆}) is a KDL post-condition. Encoded by
post(ϕ, f) = x is the instruction: if (w, a) � ϕ, then after d, set f to value x at
(w, a), if x ∈ Zn; if x = ⋆, f is unchanged. A learning update cuts accessibility
relations: the update with finite ℓ ⊆ LKDL keeps a ∼a link between worlds w and
v iff, for all ϕ ∈ ℓ, (w, b) � ϕ⇔ (v, b) � ϕ for all neighbors b of a.

4 Notation here is equivalent but different to fit better with the rest of this paper.

Definition 9. Given a KDL model M = (A,W, (Nw)w∈W ,∼, g, V), the model
reached after applying d is Md = (Ad,W d, (Nd

w)w∈W ,∼d, gd, V d) where only V d

is different, and is defined as follows: (w, a) ∈ V d(f + z) iff (a) post(ϕ, f) = x

for some ϕ ∈ Φ such that M,w, a |= ϕ, where x 6= ⋆; or (b) condition (a) does
not hold and (w, a) ∈ V (f + z).

Definition 10. A learning update is a finite set of formulas ℓ ⊆ LKDL. Given
a KDL model M = (A,W, (Nw)w∈W , (∼a)a∈A, g, V), the model after ℓ is M ℓ =
(A,W, (Nw)w∈W , (∼′

a)a∈A, g, V) where:

w ∼′
a v iff w ∼a v and ∀b ∈ A(Nw(a, b) ⇒ ∀ϕ ∈ ℓ(M,w, b |= ϕ iff M, v, b |= ϕ))

Let D and L be the sets of dynamic transformations and learning updates. The
result of applying † ∈ D ∪ L to M is denoted M †, and the [†] modality has
semantics M,w, a |= [†]ϕ iff M †w, a |= ϕ.

As we show below, for every † ∈ D ∪ L, there is a pointed DTML action
model ∆† with identical effects. As KDL operations may involve formulas with
[†]-modalities, we must use DTML action models that allow [∆, e]-modalities in
their conditions, and translate LKDL into the generalDTML language that results,
denoted L(Σn(FP, Nom)+[∆]).5 This language is interpreted over DTML models
with standard action model semantics:

(M,w) �g [∆, e]ϕ iff M ⊗∆, (w, e) � ϕ.

We define now the action models ∆†. For a dynamic transformation d ∈ D,
[11] provide reduction axioms showing d’s instructions statically encodable in
LKDL). The reduction axiom for atoms is as follows:

[d]f + z ↔

∨

ϕ∈Φ:post(ϕ,f)=z,z∈Zf

ϕ

 ∨

¬

∨

ϕ∈Φ:post(ϕ,f)=z,z∈Zf

ϕ

 ∧ f + z

As d changes atomic truth values under a definable instruction, its effects
may be simulated by an action model with a matching post-condition (i.e., the
translation of the definable instruction). More specifically, the action model ∆d

is defined as follows.

Definition 11. For dynamic transformation d = (Φ, post), the action model
∆d = (E,Q, pre, post) is defined by E = {ed}, Q(ed, ed) = pre(ed) = ⊤ and for
each constant a, post(e)(Tx(f + z)(x 7→ a)) =

Tx

∨

ϕ∈Φ:post(ϕ,f)=z,z∈Zf

ϕ

 ∨

¬

∨

ϕ∈Φ:post(ϕ,f)=z,z∈Zf

ϕ

 ∧ f + z

 (x 7→ a)

For a learning update ℓ ∈ L, ∆ℓ has events eX , eY for any consistent subsets
X,Y of {ϕ(c),¬ϕ(c) : ϕ ∈ ℓ, c ∈ C} with edge-condition Q(eX , eY) satisfied for
agents for whom all neighbors agree on X and Y . Unsatisfied edge-conditions
thereby capture the link cutting mechanism of ℓ. The detailed definition of ∆ℓ

is as follows.
5 Defined using double recursion as standard; see [1] for details.

Definition 12. Let ℓ = {ϕ1, . . . , ϕm} be a learning update. Let Tx(ℓ) := {Tx(ϕi) |
i = 1, . . . , n} and let Gℓ := {Tx(ϕ)(x 7→ a) | Tx(ϕ) ∈ Tx(ℓ), a ∈ C} be the ground-
ing of Tx(ℓ) obtained by replacing each free occurrence of x in Tx(ϕ) for each
possible constant a ∈ C. Define a Gℓ-valuation as a function val : Gℓ → {0, 1}
and let Vℓ be the set of all such valuations.

Definition 13. Let ℓ be a learning update. The corresponding DTML action
model ∆ℓ = (Eℓ, Qℓ, preℓ, postℓ) is defined by letting

✄ Eℓ = {eval | val ∈ Vℓ},
✄ preℓ(eval) =

∧

{ϕ | val(ϕ) = 1} ∪ {¬ϕ | val(ϕ) = 0}
✄ Qℓ(eval, eval) = ⊤
✄ Qℓ(eval, eval

′

) =
∧

{a∈C|∃ϕ∈ℓ s.t. val(Tx(ϕ)(x 7→a)) 6=val′(Tx(ϕ)(x 7→a))} ¬N(x⋆, a), for

any two distinct events eval, eval
′

✄ postℓ(e) = id for all e ∈ Eℓ

Note that the signature Σn(FP,ANom) is defined to have finitely many con-
stants C = {a1, . . . , an}, and hence both E, the preconditions and the edge-
conditions in ∆ℓ are finite, as required. The action model ∆ℓ works as follows.
Each event eval corresponds to one way the agents can be with respect to Gℓ,
as indicated by val. The edge conditions control how links get cut. Two worlds
(w, eval) and (v, eval

′

) in the updated model will keep a link for the agent named
a, if any disagreement between val and val′ does not concern a neighbor of a.
Or, equivalently, if all neighbors of a are identical with respect to Gℓ. Precisely
this condition is encoded in Q(eval, eval

′

).
To formally state that the dynamics of † ∈ D ∪ L are simulated by ∆†, the

following clauses are added to translation T•, for • = x, y:

T•([d]ϕ) = [∆d, ed]T•(ϕ),

T•([ℓ]ϕ) =
∧

e∈Eℓ

(preℓ(e) → [∆ℓ, e]T•(ϕ))

where (∆†, e†) is an action model implementations of † ∈ D ∪ L. Then KDL

statics and dynamics can be shown performable in DTML:

Proposition 2. For any finite agent hybrid network model M with nominal
valuation g and ϕ ∈ LKDL: M,w, g(•) |= ϕ iff T(M), w |=g T•(ϕ), for • = x, y.

Proof. By induction on ϕ. We include the cases for the dynamic modalities.
Let ϕ = [d]ψ, where d = (Φ, post). We need to show that

M,w, g(x) |= [d]ψ iff T(M), w |=g [∆d, ed]Tx(ψ)

(the case for Ty is analogous). Note thatM,w, g(x) |= [d]ψ iff Md, w, g(x) |= ψ iff
(by i.h.) T(Md), w |=g Tx(ψ). We will show that T(Md) and T(M)⊗∆d satisfy
the same formulas. To prove this, we will show that there is a bounded morphism
linking these two models (it is straightforward to show that term-modal formulas
are preserved when this is the case, as in the propositional modal setting). Define

b : T(W d) → T(W∆d

) by w 7→ (w, ed). We show that b is a bounded morphism.

1. w and (w, ed) satisfy the same basic formulas:
T(Md), w |=g Tx(f + z)
iff (i.h.) Md, w, g(x) |= f + z

iff M,w, g(x) |= [d]f + z

iff (reduction axiom for [d]f + z)

M,w, g(x) |=
(

∨

ϕ∈Φ:post(ϕ,f)=z,z∈Zf
ϕ
)

∨
(

¬
(

∨

ϕ∈Φ:post(ϕ,f)=z,z∈Zf
ϕ
)

∧ f + z
)

iff (i.h., where we let g(x) = a for some a ∈ A named a)

T(M), w |=g Tx(
(

∨

ϕ∈Φ:post(ϕ,f)=z,z∈Zf
ϕ
)

∨
(

¬
(

∨

ϕ∈Φ:post(ϕ,f)=z,z∈Zf
ϕ
)

∧ f + z
)

)(x 7→ a)

iff (by definition of ∆d) T(M), w |=g post(e)(Tx(f + z)(x 7→ a))
iff T(M)⊗∆d, (w, ed) |=g Tx(f + z)(x 7→ a)
iff (since g(x) = a and a is named a) T(M)⊗∆d, (w, ed) |=g f + z.

2. if (w, v) ∈ T(∼d
a) then ((w, ed), (v, ed)) ∈ T(∼∆d

a):
(w, v) ∈ T(∼d

a) iff (w, v) ∈∼d
a iff (w, v) ∈∼a iff (w, v) ∈ T(∼a) iff (w, v) ∈

T(∼∆d

a) (since ∆d does not change the accessibility relations).

3. if ((w, ed), (v′, ed)) ∈ T(∼∆d

a) then there is v such that (w, v) ∈ T(∼d
a) and

b(v) = (v′, ed):

Reasoning as in step 2, ((w, ed), (v′, ed)) ∈ T(∼∆d

a) iff (w, v′) ∈ T(∼d
a), and

b(v′) = (v′, ed).

Hence, b is a bounded morphism, and T(Md) and T(M)⊗∆d satisfy the same
formulas. Thus, M,w, g(x) |= [d]ψ iff Md, w, g(x) |= ψ iff (by i.h.) T(Md), w |=g

Tx(ψ) iff (bounded morphism) T(M) ⊗ ∆d, (w, ed) |=g Tx(ψ) iff T(M), w |=
Tx([d]ψ).

Next, let ϕ = [ℓ]ψ. We need to show that

M,w, g(x) |= [ℓ]ψ iff T(M), w |=g

∧

e∈Eℓ

(preℓ(e) → [∆ℓ, e]Tx(ψ))

(the case for Ty is analogous). Note that M,w, g(x) |= [ℓ]ψ iff M ℓ, w, g(x) |= ψ iff
(by i.h.) T(M ℓ), w |=g Tx(ψ). As in the previous case, we will show that T(M ℓ)
and T(M) ⊗ ∆ℓ satisfy the same formulas by defining a bounded morphism
linking the two. Note that the preconditions in ∆ℓ are pairwise inconsistent and
jointly exhaustive, since each precondition corresponds to one way of assigning
truth values to the formulas in Gℓ. Hence, for each w ∈ T(W), there is exactly

one event eval such that T(M), w |= preℓ(eval). Define b : T(W ℓ) → T(W∆ℓ

) by
w 7→ (w, eval). We show that b is a bounded morphism.

1. w and (w, eval) satisfy the same basic formulas:
This is clear from the fact that learning updates do not change the acces-
sibility relations. T(M ℓ), w |=g Tx(f + z) iff (i.h.) M ℓ, w, g(x) |= f + z iff
M,w, g(x) |= f + z iff (i.h.) T(M), w |=g Tx(f + z) iff T(M)⊗∆ℓ, (w, eval) |=g

Tx(f + z).

2. if (w, v) ∈ T(∼ℓ
a) then ((w, eval), (v, eval

′

)) ∈ T(∼∆d

a):

As T(M) is weakly rigid, each agent has the same name in each equivalence
class [w]∼a

of ∼a. In what follows, we let the name of any agent o ∈ A in
worlds of [w]∼a

be o. Now, (w, v) ∈ T(∼ℓ
a) iff w ∼ℓ

a v

iff w ∼a v and ∀b ∈ A(Nwab⇒ ∀ϕ ∈ ℓ(M,w, b |= ϕ iff M, v, b |= ϕ))

iff (contrapositive) w ∼a v and ∀b ∈ A(∃ϕ ∈ ℓ((M,w, b |= ϕ and M, v, b |=
¬ϕ) or (M,w, b |= ¬ϕ and M, v, b |= ϕ)) ⇒ ¬Nwab)

iff (by i.h.) (w, v) ∈ T(∼a) and (by def. of T(M)⊗∆ℓ)

T(M), w |=g pre(eval) and T(M), v |=g pre(eval
′

) for some val, val′ ∈ Vℓ, and
for all b ∈ C:

if there is a ϕ ∈ ℓ such that
(

T(M), w |=g Tx(ϕ)(x 7→ b) and T(M), v |=g Tx(¬ϕ)(x 7→ b)
)

or
(

T(M), w |=g Tx(¬ϕ)((x 7→ b)) and M, v |=g Tx(ϕ)(x 7→ b)
)

then
T(M), w |=g ¬N(a, b)

iff (w, v) ∈ T(∼a) and T(M), w |=g pre(eval) and T(M), v |=g pre(eval
′

) for

some val, val′ ∈ Vℓ and (by def. of ∆ℓ) T(M), w |=g[x⋆ 7→a] Q(eval, eval
′

) iff

((w, eval), (v, eval
′

)) ∈ T(∼∆ℓ

a).

3. if ((w, eval), (v′, eval
′

)) ∈ T(∼∆ℓ

a) then there is v such that (w, v) ∈ T(∼ℓ
a)

and b(v) = (v′, eval
′

):

Reasoning as in step 2, ((w, eval), (v′, eval
′

)) ∈ T(∼∆d

a) iff (w, v′) ∈ T(∼ℓ
a),

and b(v′) = (v′, eval
′

).

Hence, b is a bounded morphism, and T(M ℓ) and T(M) ⊗∆ℓ satisfy the same
formulas. Thus, M,w, g(x) |= [ℓ]ψ iff Md, w, g(x) |= ψ iff (by i.h.) T(M ℓ), w |=g

Tx(ψ) iff (bounded morphism) for the unique event eval such that T(M), w |=g

preℓ(eval), we have T(M)⊗∆ℓ, (w, eval) |=g Tx(ψ) iff T(M), w |=g

∧

e∈Eℓ(preℓ(e) →

[∆ℓ, e]Tx(ϕ) iff T(M) |= Tx([ℓ]ψ).

This completes the proof.

With Prop. 2 embedding KDL in DTML, it remains to show that there is a
complete and decidable system for the image of KDL. Up to translation, such a
logic is then a logic for the class of KDL models. To state the result, denote the
TML image of the class of n-agent KDL models by T(KDLn). We now define a
set of formulas, Fn, which can be shown to characterise the class T(KDLn).

Definition 14. Let Fn ⊆ L(Σn(FP, Nom)+[∆]) be the logic extending the term-
modal S5 logic with the reduction axioms for action models (∆†, e†), † ∈ D ∪ L

(defined in [1]), as well as the following static axioms:

1. There are n agents and they are all named:

Namedn := ∃x1, ..., xn(

∧

i,j≤n,i6=j

xi 6= xj

 ∧ ∀y

∨

i≤n

y = xi

 ∧

∧

i,j≤n,i6=j

ci 6= cj

 ∧

∧

i≤n

xi = ci

)

2. Weak rigidity (Def. 8):

Rign :=
∧

c∈C

∀x((c = x) → ∀y(Ky(c = x)))

3. The neighbour relation is irreflexive and symmetric:

Neigh := ∀x∀y(¬N(x, x) ∧ (N(x, y) ↔ N(y, x)))

4. Agents know their neighbors: KnowNeigh := ∀x∀y(N(x, y) ↔ KxN(x, y))

We then obtain the result:

Proposition 3. Fn statically characterizes T(KDLn).

Proof. By model-checking of the formulas in Fn.

Which we can use to state completeness:

Theorem 1. For any n ∈ N, the logic Fn is sound, strongly complete and de-
cidable w.r.t. T(KDLn).

Proof (sketch). By Prop. 3, Fn statically characterizes T(KDLn). The result then
follows from three results from [1]: 1. Any extension of the term-modal logic K

with axioms A is strongly complete with respect to the class of frames charac-
terized by A, and 2. If A characterizes a class with finitely many agents, then the
logic is also decidable, and 3. any dynamic DTML formula is provably equivalent
to a static DTML formula using reduction axioms.

Thus, since Fn characterizes T(KDLn), which is a class with finitely many
agents, and all dynamic axioms in Fn are probably equivalent to static DTML, it
follows that K+Fn is strongly complete and decidable with respect to T(KDLn).

4 Final Remarks

This paper has showcased DTML as a framework for modeling social networks,
their epistemics and dynamics, including examples in which uncertainty about
name reference and de dicto/de re distinctions are key to modelling information
flow and network change correctly. It was shown that DTML may encode the
popular hybrid logical models of epistemic networks, and that DTML may be
used to obtain completeness for an open-question dynamics through emulation.

We are very interested in learning how DTML relates to GDDL with respect
to the encodable dynamics. We have been able to emulate the updates used

in the examples of [22], but the general question is open. Further, the statics
of frameworks that describe networks using propositional logic [2, 14] must be
DTML encodable, and we expect the name about their updates, where reduc-
tion axioms exist. This raises two questions: if we can show this by a general
results instead of piecemeal, and whether principled DTML action models exist
for classes of updates. E.g., the threshold update of [2] gives an agent’s property
P if a given fraction of neighbors are P ; for a fixed agent set, this is DTML encod-
able by using the reduction axioms of [2] to provide pre- and postconditions. For
a principled update, however, seemingly we need a generalized quantifier (e.g.,
a Rescher quantifier). If so, the general update form is not DTML encodable.
Classification results like these would add valuable insights on network logics.

References

1. A. Achen, A. O. Liberman, and R. K. Rendsvig. Dynamic Term-Modal Logics for
Epistemic Planning. under review. arXiv:1906.06047, 2019.

2. A. Baltag and Z. Christoff. Dynamic Epistemic Logics of Diffusion and Prediction
in Social Networks. Studia Logica, 2018.

3. A. Baltag and L. S. Moss. Logics for Epistemic Programs. Synthese, 139(2):165–224,
2004.

4. A. Baltag, L. S. Moss, and S. S. Solecki. The Logic of Public Announcements,
Common Knowledge, and Private Suspicions. In TARK ’98, p. 43–56. 1998.

5. J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and change.
Information and Computation, 204(11):1620–1662, 2006.

6. T. Bolander. Seeing is Believing: Formalising False-Belief Tasks in Dynamic Epis-
temic Logic. ECSI 2014, volume 1283, p. 87–107.

7. T. Bolander and M. B. Andersen. Epistemic planning for single- and multi-agent
systems. Journal of Applied Non-Classical Logics, 21(1):9–34, 2011.

8. T. Brauner. Hybrid logic and its proof-theory. Springer, 2011.
9. Z. Christoff. Dynamic Logics of Networks. PhD thesis, U. of Amsterdam, 2016.
10. Z. Christoff and J. U. Hansen. A two-tiered formalization of social influence. LORI

2013, volume 8196 of LNCS, 68–81. Springer, 2013.
11. Z. Christoff and J. U. Hansen. A Logic for Diffusion in Social Networks. Journal

of Applied Logic, 13:48–77, 2015.
12. Z. Christoff, J. U. Hansen, and C. Proietti. Reflecting on social influence in net-

works. Journal of Logic, Language and Information, 25:299–333, 2016.
13. Z. Christoff and P. Naumov. Diffusion in social networks with recalcitrant agents.

Journal of Logic and Computation, 29(1):53–70, 12 2018.
14. Z. Christoff and R. K. Rendsvig. Dynamic Logics for Threshold Models and their

Epistemic Extension. Proc. of ELISIEM, 2014.
15. H. van Ditmarsch and B. Kooi. Semantic Results for Ontic and Epistemic Change.

In Logic and the Foundations of Game and Decision Theory (LOFT 7), Texts in
Logic and Games, Vol. 3, pages 87–117. Amsterdam University Press, 2008.

16. J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two No-
tions. College Publications, 2nd, 2005 edition, 1962.

17. B. Kooi. Dynamic term-modal logic. In LORI 2007, Texts in Computer Science 8,
p. 173–185, 2007.

18. L. Zhen and J. Seligman. A Logical Model of the Dynamics of Peer Pressure.
Electronic Notes in Theoretical Computer Science, 278(0):275–288, 2011.

http://arxiv.org/abs/1906.06047

19. F. Liu, J. Seligman, and P. Girard. Logical Dynamics of Belief Change in the
Community. Synthese, 191(11):2403–2431, 2014.

20. R. K. Rendsvig. Diffusion, Influence and Best-Response Dynamics in Net-
works: An Action Model Approach. In ESSLLI 2014 Student Session, p. 63–75.
arXiv:1708.01477, 2014.

21. J. Seligman, F. Liu, and P. Girard. Logic in the Community. In Logic and Its
Applications, p. 178–188. Springer, 2011.

22. J. Seligman, F. Liu, and P. Girard. Facebook and the epistemic logic of friendship.
In TARK 2013, p. 229–238, 2013.

23. J. Seligman, F. Liu, and P. Girard. General Dynamic Dynamic Logic. In Advances
in Modal Logic, vol. 9, p. 239–260. Springer, 2012.

24. S. Smets and F. R. Valezquez-Quesada. How to Make Friends: A Logical Approach
to Social Group Creation. In LORI 2017, LNCS vol. 10455, p. 377–390, 2017.

25. S. Smets and F. R. Valezquez-Quesada. In Dynamic Logic. New Trends and Ap-
plications (DALI 2017), LNCS vol. 10669, p. 171–184. Springer, 2018.

http://arxiv.org/abs/1708.01477

	Dynamic Term-Modal Logic for Epistemic Social Network Dynamics (Extended Version)
	1 Introduction
	2 Models and Languages for Epistemic Social Networks
	2.1 Term-Modal Logic and Epistemic Network Structures
	2.2 Knowing Who and Knowledge De Dicto and De Re
	2.3 Dynamics: Action Models and Product Update
	2.4 Announcements De Dicto and De Re
	2.5 Postconditions and Network Change
	2.6 Learning Who

	3 Embedding Dynamic Social Network Logics in DTML
	3.1 Embedding Static Languages and Models
	3.2 KDL Dynamic Transformations and Learning Updates in DTML

	4 Final Remarks

